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GROUP THEORY APPLIED TO BOUNDARY CONDITION PROBLEMS 

by M. Makai 

ABSTRACT 

Applications of group theory to reactor physics problems is 
reviewed. The review deals only with boundary value problems of 
elliptic operators, which seems to be the orphan of applied 
mathematics. The discussion first formulates some general features 
of the methods and introduces its applications to reactor physics 
problems. First the boundary value problems are formulated. The 
irreducible components (irreps) of the boundary possess remarkable 
properties and the solution to a given problem will inherit the 
properties of the irreps if the involved operators meet the formulated 
requirements. The results are applied to a translational invariant 
case. A numerical method is established to solve linear elliptic 
problems. The method provides an arbitrarily accurate solution even 
if the discretization is coarse. Practical applicability is proven by 
reactor physics applications, where good accuracy, stability can be 
observed. 





I. INTRODUCTION 

There is a recent interest in the application of group theory to boundary value problems. 

This may be motivated by several reasons. First of all, there is hope for utilizing group theory to 

work out effective massively parallel algorithms. Secondly, group theory has found a large number 

of successful applications both in physics and mathematics, but boundary value problems apparently 

fell out of the scope of the appUcation of group theory. Several attempts have been made to apply 

group theory to the boundary value problem; there are some results but a breakthrough has not been 

achieved. 

The present work aims at applying group theoretic considerations to reactor physics. As the 

reader will see, in that context, symmetry considerations appeared long ago, partly because some 

of the leading personalities in reactor physics also made a significant contributions to group theory 

as well. An important area of those investigations is in lattice theory, where the reactor core is 

assumed periodic. The methods applied in lattice theory show a close similarity to lattice theory of 

solid state physics. Reactor physics lattice theory developed in a pragmatic way with group theory 

appearing only from time to time. The problem of non-uniform lattices demanded new methods. 

There the lattice involves cells of different type, the geometry of each cell type is the same, but the 

material composition may be different. A survey of the large ijumber of approximations used in this 

problem was given by Deniz.[ll] From the works of Bema,[5] Bonalumi,[7] Deniz,[ll] and 

Selengut,[42] it became clear, at the end of the seventies, that in the computations of heterogeneous 

lattices it is important how each cell "responds" to its different surroundings. Therefore, the cell 

was embedded into different, typical surroundings as a first approximation, its response was 

investigated. The most important and simplest was a "uniform" surrounding. The second most 

important surrounding was meant to account for the non-uniformity of the surrounding cells. Bema, 

Bonalumi and Maiorov[27] proposed to embed the cell into a "cosine hke" surrounding to determine 

its diffusion coefficient. Laletin, lead by practical considerations, set up a number of typical 

surroundings, see Ref. [22], i.e. boundary conditions to characterize the cell properties. Later on, 

it became clear that those "typical surroundings", in the group theoretic context, are the irreducible 

components of the general boundary condition. Since then, codes have been written and have been 

-I-



applied to routine calculations and the problem of heterogenous lattices seems to have been solved. 

This problem is discussed in Section HI. 

The application of group theory got an impetus during the period from the second half of 

the seventies to the first half of the eighties. The first application of group theory was to the finite 

element method and was due to A. Fassler;[14] and S. Pelloni[37] worked out a method for 

application to practical problems. Applications to coarse mesh solutions of the neutron diffusion 

equation began with the work of Makai,[28] Makai, and Arkuszewski.[29] In diffusion theory, 

symmetry considerations have helped to develop analytic solutions for both square and hexagonal 

nodes so that the only approximation in the theory concerns the boundary condition. 

Although the past achievements of group theory in physics are not touched in the present 

work, they should not be left unmentioned. If a given equation, for example, is considered without 

boundary conditions, we may ask what are those transformations which leave the equation invariant. 

In physics, those transformations have lead to general conservation laws. Ovsiannikov's[36] and 

Sattinger's[40] books give the desired tools. If the transformations which leave the equation invariant 

are known, then the mathematical question arises: in which coordinate system will the solution take 

its simplest form? The selection of special coordinate systems for a given equation are is connected 

with symmetry transformations. That question is treated in Miller's book[34] and in Olver's 

monograph.[35] Group theory is the basis of relationships between many different disciplines of 

mathematics, see 01ver[35] and Mackey.[26] 

It is well known that group theory has divided the scientific community. Its successes in 

physics, chemistry and mathematics speak for themselves. Still, mostly among physicist there has 

been at times considerable opposition. Why bother with group theory if the same results can also 

be obtained by other means? Wigner[49-50] has given the answer to this question.' 

'In the foreword to the Hungarian edition[50] of his book, Wigner writes: "Today we still 
feel that if a rule can be obtained by invariance postulates then it is worth to derive it in this way. 
This view relies on two arguments. The first may be that the consequences of invariance principles 
are more transparent, and more general than most conclusions obtainable by any specific 
calculation." 



The present work does not pretend to contribute to group theory. It rather intends to present 

applications of group theory to specific practical problems. The elements of group theory for 

application to boundary value problems are given in Appendix A. There are several notations in use 

for the irreducible representations, the present work follows the notation of Ref. [23]. The notation, 

standard in reactor physics problems, is given in Appendix B. 

In general, bold letters denote operators. The equation under consideration is written as 

AO(x) = 0 (LI) 

where A is a linear, elliptic operator, the independent variable x is in a convex set V. O denotes 

symmetry transformation of the above equation, G denotes the group of symmetries of operator A. 

Thus, a symmetry transformation OeG, if AO = GA. The matrix associated with O is denoted by 

O, and its elements are Ô .̂ The equation under consideration is not always homogeneous. 

n. SYMMETRIES AND BOUNDARY VALUE PROBLEMS 

In this Section, we formulate the general boundary ̂ falue problem. It will be shown that 

when the operators in the boundary value problem possess certain properties, the general problem 

can be split into a set of subproblems. In this way, group theory leads to a computationally more 

efficient formulation of the problem, and, in addition, to each subproblem there can be ascribed a 

physical meaning. 

Consider a linear operator A acting on the function space L2(V), where V is a symmetric 

convex region. We assume that there is at least one operator transforming V into itself. For a 

boundary condition problem, we assume linear operator B forms a function given on the boundary. 

The range of operator A includes V, the range of operator B includes the boundary 5V. The 

relationship between the symmetries of a region V and those of an operator A (or B) are defined in 

Appendix A. Those symmetries form respective groups Gy, G^ and Gg. The boundary value 



problem is then determined by BVP (V, A, B ). We define the symmetry of the boundary value 

problem as follows. 

Deflnition 1. A linear operator O is said to have the symmetiy of the boundary value problem (V, 

A, B) if (a) O transforms V into itself; (b) O and A commute: OA=AO and (c) O and B commute: 

GB=BO. 

According to Definition 1, the symmetry group of the problem (V, A, B) is the intersection 

G = G,nG,nG3 (°-i) 

where G^, G^ and G^ are the symmetry groups of V, A and B, respectively. 

The symmetries of problem (V, A, B) form a group. That group may consist of a single 

element, the identity transformation, or of an infinite number of symmetries. This partly depends 

on operators A and B. In a number of cases it suffices to assure that O commutes with A, then it 

commutes with B as well. Often B is the identity transformation (Cauchy type problem) or the 

normal gradient (Neumann type problem), or the linear combination of those two problems. Most 

boundary value problems of reactor physics belong to one of these. 

Definition 2. Operators A and B are called familiar if B is such that GA = AG implies GB = BG. 

It is easy to see that Cauchy and Neumann boundary condition problems involve familiar 

operators. In the former, B is the identity operator. 

Definition 3. The [0,7t/2nF) interval is closed from the left and open from the right and is called 

the ground (where np is the number of faces of V). 

The symmetries of the boundary condition problem BVP(V, A, B) suggest the application 

of group theoretic techniques. Depending on the problem, the symmetries may form, for example. 



a discrete group or a Lie group. The symmetries can also be arranged into classes (or conjugacy 

classes in the language of Stemberg,[46] Ludwig and Falter),[25] to which the results of group 

representation theory apply. Thus, by means of projection operator (A.6), any function can be 

decomposed into functions transforming according to the irreducible representations (irreps). First, 

we investigate basic properties of the irreps. 

According to projection operator (A.6), the irrep f, of a function f is a linear expression of 

f taken at different points in the range of f. Consequently, if f is n times differentiable, so is the irrep 

fj. Let f|(6) be given in the interval 6e[0,7t/2np). The direction 0=7:/2np is a symmetry axis and the 

character table tells us that f, is an eigenvector of each symmetry operator with the eigenvalue given 

in the i* row of the character table and in the column corresponding to the symmetry, thus by 

applying a reflection through the face to f; we can obtain the function fj in the range [0,np). Here [,) 

denotes an interval closed from the left and open from the right. Now, applying the rotational 

symmetry of V, the fi(6) function is obtained for the entire [0, 2;:] interval. When f; is a component 

of a two dimensional representation, more care is needed because the components may transform 

into each other. Thus, we arrived at the following statement. 

Lemma 1. If f(0) belongs to C" then its irreps fj(9) determined by (A.6) also belong to C The irrep 

fi(0), 0<9<27t is uniquely given by its value in the ground [0, Tt/2nF). 

The first question is if we have a decomposition of the boundary condition do we also have a 

decomposition of the solution? What can we gain by such a decomposition of the solution? 

Basic Lemma. Let the problem 

Act) = 0 in V 
B<j) = f on â  

be given, and the linear operators A and B be such that 

B<t) = f on av. ^ -̂̂ ^ 

(a) When f = 0, the only solution is (|) = 0, i.e. the homogeneous problem has only the 

identically zero function as solution. 
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(b) The null space of operator B is empty, i.e. if B(1)=0 then ^=0. 

Then, if f transforms according to the i-th irreducible representation on the boundary, the solution 

transforms according to the i-th irreducible representation inside V. 

Proof: Let f = f, be a one-dimensional irreducible representation and (J), the corresponding 

solution. Then, for any symmetry G we have Gf; = a, f;. Applying G to the second equation and 

making use of the commutation of G and B, we get OB<t), = BG(J), = a,B(l>, = a,^. Applying G to the 

first equation, we get GAt]); = AG<J), = 0. Multiplying the first equation by a„ and because A is 

linear, we also have A(a,(t>,) = 0. Thus, we have the following equations for (G(|),-a|<t)j): 

A(G(t), - a,(|),) = 0 in V 

B(G(J), - a.(t).) = 0 on a v , 

but according to assumption (a), the only solution is (G(t),-a,4),) = 0, which proves the statement for 

a one-dimensional representation. Note that the second equation above is not true unless assumption 

(b) is met. 

Let f = f, be a component of a two- or three-dimensional representation, i.e. it transforms 

as 

Of, = Eo,A. 
k 

The boundary condition (BC) for each component k is given by B(t)k=fk. Multiplying that equation 

by Oik and summing over k, B being linear, we have 

B ( E O A ) = E O A -

Multiplying the second equation of the problem by O, and using the linearity of B, we have 



OB<t). = BOd), = E O i A -
k 

Subtracting the last two equations, we get by means of assumption (b) 

B(o4)i-EoA) =0. 

thus on av (j), transforms as the i-th column of a multidimensional representation. 

As to the transformation rules in V, if we multiply the first equation in (n.2) by Oĵ , sum 

over k on one hand, and multiply the equation again by G, we have 

^(oct.i-EoA) =0 

The last two equations form a BVP, the only solution of which is identically zero. This completes 

the proof Certainly the second step of the proof also includes the first step. 

Corollary. By virtue of the linearity of the problem, when a volumetric source Q is included the 

solution to 

* 
A$Q = Q in V 
B4)Q = f on av 

is given by $Q = <!> + Y, where $ is the solution of (n.2) and T is the solution of 

AT = Q in V 
B'P = 0 on av . 

Applying the argument used in the proof of the Basic Lemma, we arrive at the following result. Let 

qj be the ith irreducible component of Q. Then an irreducible decomposition of $Q is <&Q = T, -I- $, 

where 
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and 

Af. = q.in V 
BT, = 0 on av 

A$. = 0 in V 
B$, = f, on av. 

The basic lemma allows one to find suitable representations for the boundary values on dW 

and for the solution in V. The general prescription is to find suitable representations, with which 

a general function, given along the boundary, is decomposed into irreps, and solve the above 

equations for the components. To this end the projector (A.6) is applied. We set forth the following 

notation. A point x on the aV boundary of the convex volume V is characterized by an angle 6 

measured from a suitable center inside V. We assume furthermore, that dV consists of Up faces. 

When V is a regular triangle, square, hexagon or pentagon the faces are of equal length or area and 

there are 2np symmetry transformations leaving V invariant. Now the symmetries of the problem 

transform one point of the boundary into another boundary point. Thus the projector (A.7) applied 

to a function f(6) will give linear combinations of f(6,), i = 1, 2np. 

Lemma 2. The irreps of a boundary value f(6) take the form 

f.(e) = g.(e mod7:/np)e. 6 (n.3) 

where [ ] denotes the entire part, the function ê  assigns an integer number to its argument, and the 

gi function is not identically zero on the ground. 

Proof Let us note that the f,(6) functions are orthogonal in the following sense: 

2n 

f,(e) f/e)de = e.̂  if i*j 
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Furthermore, any function can be expressed as a linear combination of functions {,(&). It suffices 

to show that there is a function ê  with which f|(e) transforms according to (A7). First, we note that 

the argument of ê  takes 2np values, thus, e, may take at most 2np distinct values. Hence, e, may be 

represented as a vector of 2np values. The components of the vector correspond to the intervals 

(k - 1) n/Uf < 6 < kTi/n .̂ Thus, finding functions q reduces to finding irreps in a 2nF dimensional 

space which can be achieved by means of Eq. (A.6) by starting out from a suitable initial vector. 

The gj function may not be identically zero on the ground, and has no influence on the symmetry 

properties of {,{Q). Thus the lemma is proven. 

As an illustration. Fig. 1 shows the f,(6) for a square shaped node. We assumed that & = 1. 

There are six irreducible components, four of them (A,, A^, B, and Bj) are one dimensional, and 

there are two equivalent two dimensional representations, (E,, Ej) and (E3, E4) which form a pair, 

respectively. The irreps are numbered in Fig. 1 from bottom to top. The eight functions in Fig. 1 give 

the variation of the irreps on the eight half sides. The argument of {,(Q) is the angle variable and 

each side covers a n/l wide range. When g; differs from unity, g; modulates the i-th function e,. 

The above two lemmas form the 

basis of applying group theory to boundary 

value problems. The Basic Lemma states 

that if operators A and B have the required 

properties, the solution inside V will inherit 

the symmetry properties of the function 

prescribed on the boundary. That statement 

is remarkable, because the boundary dW is 

a simpler geometrical formation than the 

region V. It is noteworthy, that a precursor 

of Basic Lenmia appeared first in 1982, see 

Ref. [30], notwithstanding that the first 

application of group theory to the boundary 

Fig. 1. Irreps on the Boundary of the Square 
(gi=constant) 
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value problem is more than 40 years old, see (Stiefel, Ref [47]). A possible explanation is that in 

many cases it is evident that the homogeneous problem has no nontrivial solution. In reactor 

physics, on the other hand, nontrivial solutions of the homogeneous problem are of major 

importance. 

^̂ f̂  
El 

Lemma 2 is actually a trivial consequence of the properties 

of the irreducible components obtained by expression (A.6), but its 

importance justifies formulating it as an independent assertion. The 

e, vectors bear important physical meaning which is apparent in 

simple geometries. In one dimension, for example, we have two 

components: e, = (1,1); e2= (-1,1). The first vector says that the left 

and right boundaries are equal. The second vector represents a 

gradient. A solution of any boundary value problem can be 

composed from the solution of a symmetric problem and of the 

antisymmetric gradient problem. If the region is more complex, the 

gradient may have more components and also the second derivative 

boundary value problem can be composed from the solution of a symmetric problem and of the 

antisymmetric gradient problem. If the region is more complex, the gradient may have more 

components and also the second derivative may appear. As an illustration, we present a simplified 

boundary condition (i.e. by a four element vector) prescribed on the boundary of a square, see 

Fig. 2. Representations A2 and Bj will be zero, and the two-dimensional representation will be 

present only with one pair (E,, E )̂. 

Fig. 2. Simplified hreps 
on the Boundary of a 
Square 

The first irrep represents the homogeneous surroundings, the second irrep is a gradient along 

the X axis (faces 1 and 3 have normal parallel to the x axes), the third irrep is a gradient along the 

y axis, the fourth component represents a cross-fiow, a kind of second derivative. 

Let us decompose the g^(6) function into a power series: 

g,(e) = Ec,„e" 
N 

c 
k=0 

(n.4) 
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where q̂  are arbitrary coefficients. Retain the e, functions as introduced in Fig. 1, then the irreps in 

expression (11.3) involve the up to N-th order Walsh functions (Seed and Albrecht, Ref. [41]). 

Consider the Fourier ti-ansform of g(9). Because it is a periodic function with period 2n, 

in the Fourier series only the integer (k) components contribute: 

g(9) = E afoskd + biSinkQ = E E (''4m*t'̂ °^( '̂" + ^) 6 + ^4mtit '̂"( '̂" * ^)^ 

^ £ ^ ( 6 ) + 0^(6) 

(n.5) 

with \ = 0. Those components for which k(mod np) is a given number, transform the same way 

under the symmetries of V, thus they are collected into one even (E|((6)) and one odd (0^(9)) 

function. Table 1 gives the correspondence between those functions and the irreps. 

Table I. Irreps and Fourier Components on a Square Boundary. 

Fourier Component 

Eo 

E, 

E2 

E3 

©0 

0, 

©2 

03 

Subspace 

A, 

E, 

B, 

E2 

A, 

E, 

B, 

E2 
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A model allows a formulation of relationships between two physical quantities given on the 

boundary. Let f(9) and h(6) be two given quantities on the boundary av. Their relationship is 

given by the expression 

2n 

h(6) = rG(0,9')f(6')d6' (n.6) 
0 

where G is a given function. Usually h(0) and f(9) are expanded into coordinate functions (i.e , 

functions of x and y). Of special interest are the coordinate functions which represent the values 

on the faces. 

Definition 4. Let h = (h,,...,h„F) and f = (f,,...,f|,p) the values of function h and f on the np faces. The 

matrix R joining f and h as 

h = Rf (n.7) 

is called a response matrix. 

There are a number of response matrices depending on the f and h quantities. Most 

frequemly f is the solution to an elliptic equation and h is constant times the normal derivative. 

Another important case is when their linear combinations are encountered, see Appendix B for 

details. In those cases, R commutes with the symmetries of V. To see this, we have to show that the 

normal gradient is invariant under a symmetry O. This is the case because according to Definition 

A. 1 0(nV) = (OnOV) = (nV), where n is the normal to the surface; because the symmetries are 

equivalent to unitary transfonnations (see Appendix A). Applying Schur's lemma (see Appendix A) 

to problem (0.2), we arrive at Lemma 4. 

Lemma 4. If V is a symmetric region then any response matrix, as in Definition 4, is block 

diagonalized by expressing both h and f in the irreducible components. 
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Lemma 4 implies a rather positive statement, viz. if the response matrix is applied to a 

vector (input) transforming as a given component of an irrep, the response will keep the symmetry 

properties of the input. For example, in a regular hexagonal node, the response matrix connects 6 

faces to 6 faces, whereas the 6 irreps do not mix. 

The results of the present section is summarized as follows. If we have a group given, the 

solution space can be decomposed into irreducible, orthogonal subspaces. The decomposition is 

based on expression (A.6). If the given group commutes with the BVP, then the operators involved 

in the problem leave each subspace invariant. As a consequence, the decomposition into irreps on 

the boundary entails a decomposition inside the volume. Furthermore, any matrix that connects two 

types (e.g. flux and net current) of functional formed from the solution with the help of A and B, 

will be diagonal. The above decompositions form the basis of the applications in the subsequent 

sections. 

m. NON-UNffORM LATTICES 

Let us assume that among the symmetries of operator A we also have the translational 

symmetries given in two-dimensions by n a, + m aj , where, n, m are integers, ai and aj are so 

called elementary translations[10] bringing the lattice into itself. Then, the irreducible 

representations are eigenfunctions of the translational operator, the solution can be decomposed 

into irteps, and the results of Appendix A apply. A survey of reactor physics lattice theory is given 

in Ref. [11]. The lattice, however, is an abstraction. Every real structure is finite, even if its internal 

structure is a repetition of an element called a cell. 

Derinition 1. The cell is the elementary unit of volume V. 

Definition 2. The lattice obtained by repeating a single cell type is called homogeneous lattice. 

The lattice containing more than one cell types is called non-uniform lattice. 
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Translational symmetries can be exploited when solving the neutron transport (or diffusion) 

equation in the same manner as in solid state physics. That fact has been known for a long time, 

still, in reactor physics, the first systematic study appeared in 1974 in Ref [6]. A more recent 

survey has been given by Deniz.[l 1] In these studies every lattice is finite; furthermore, there are 

irtegularities in the lattice (e.g. a cell is filled out by structural or absorber material) and which need 

to be taken into account. Below a brief summary is given on the application of the results of 

Section n. to the theory of finite lattices. 

Let us first consider a given linear operator A over an infinite lattice. If A -H k*d) = A(r) for 

any integer k and for a lattice vector d, then AT(k*d) = T(k*d)A, where T is the translation 

operator. Thus, thesymmetriesof A include translation as well. The technique of exploiting the 

translational symmetry has been demonstrated some time ago (see for example, Callaway, 

Ref [10]). An application to the formalism of reactor physics is given in Ref [31]. From technical 

point of view, the lattice is a special discretization of a volume, where the identical subvolumes are 

called cells. 

In the present Section, we apply the group theoretic results in Appendix A to the solution 

of the neutron transport equation (TE), Eq. (B.5). The basic terms of neutron physics are briefly 

summarized in Appendix B. The results of the application to the analysis of the TE can be 

summarized as follows: 

1. The irreps of the neutron transport equation in a homogeneous lattice are the Bloch's 

functions:[10, 11] 

fg(x) = fB(r,E,Q) = e*''uB(r,E,n) 

where UB(r,E,n) = UgF + n*a, + m*a2, Q). 

2. The eigenfunctions of the transport operator A can be expressed by Bloch's functions 
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$(x) = Ec(B)*e '%(x) (ni.l) 
B 

where c(B) are arbitrary coefficients. 

3. The periodic part of the Bloch's function satisfies the equation 

A(uB)e'«' = -A(e'BO*UB (ni.2a) 

where A(e'"'*UB) = A(e'"')'''UB + A(uB)e'̂ '. Furthermore, Ug possesses the following symmetries: 

UQBW = "8(0"'") (BI-2b) 

i.e. the periodic part of Bloch's function associated with vector GB (left hand side of Eq. (in.2b)), 

is the same as the function Oug (the right hand side of Eq. (ni.2b)). See Definition A. 1. 

4. The Bloch's functions are orthogonal in the following sense: 

(fe , fe' ) = 0 if B*B. 

Here fg = e'̂ ''''UB(x) and the bracket denotes integration over x and superscript + refers to complex 

adjoint. 

5. Integrals of the type 

(fB;A * fg/) = rdrdOdEfB.(r,E,Q)A * fB(r,E,Q) 

are zero unless fg* and fg belong to the same invariant subspace, c.f Theorem (A.2). 
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6. Expanding the periodic part in Bloch's function into a Taylor series around B = 0, 

UB(X) = u„(x) * E " i j W B j +... '•^•^^^ 
j 

We get the following expressions for the eigenfunctions: 

*(x) = [ E e " " ) u o ( x ) ^ E ( E ' e'^'iB. u,/x) + 
j - ' J ^ 

(m.3b) 

We note here, that the decomposition (in.3a) of the periodic part of Bloch's fiinction facilitates the 

determination of the irreps of Ug. Using the projector (A.6) and property (in.2a), we see that u,, is 

the irrep transforming as the unit representation, u,j are components of a two dimensional 

representation. At the same time, the irreps have a physical meaning, Uo(x) is the solution of 

Eq. (1.1) in the infinite periodic lattice, U|j(x) is an odd periodic function to be determined from 

(in.2). In Eq. (ni.3b), the first term in brackets is called in neutron physics the macroflux. We note 

that expression (in.3) expresses the solution in a finite lattice, whenever the macroflux satisfies the 

boundary condition prescribed at the surface of the finite lattice. 

The above derivation based on different assumptions has been known for a long time. 

Below it is extended to non-uniform lattices, i.e. to cases where the geometry of the cells is identical 

but the internal structure, the material 

distribution may vary from cell to cell. Also a 

new derivation of an asymptotic form to the 

neutron transport equation will be given. The 

TE is described in Appendix B. 

Al 
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In a non-uniform lattice, the 

eigenfunctions of the TE (in.3a) can be 

generalized by expanding them into 

irreducible components on the cell boundary. 

When the cells are small, average entering Fig. 3. Irreducible Entering Current Patterns for 
Square Cell 
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currents may be prescribed on the cell boundary. In a square cell, the decomposition of the boundary 

flux into irreps results in A„ B,, E, and Ej terms, see Fig. 2. According to the Basic Lemma, if the 

cell is sufficientiy small, this decomposition induces a decom-position inside the cell. The solution 

to the transport equation with irreducible boundary condition is considered as a response to the 

boundary condition. The entering current patterns are given in Fig. 3. 

The A, term of the solution corresponds to UQ and describes the cell response when 

imbedded in homogeneous surroundings, the E, and Ê  terms describe the cell responses when 

imbedded it into an x and y directed gradients, respectively. The B, term describes the cross-flow. 

Because any boundary condition can be decomposed into irteps, the above cell responses 

exhaustively characterize the cell. Hence, the solution to the TE can be written as 

a)(x) = X,*u,(x) + X2*U2(x) + X3*U3(x) + X,*u,(x) (ni.4) 

where each X̂  is a constant in a cell, whereas each Uj(x) is a solution to the TE in the cell. We are 

able to calculate the exiting cureent from the Uj(x) functions and arrive at a decomposition of the 

exiting curtent at the boundary. This expression involves response matrices determined from the 

U| functions. Let the numbering of the irteps in Eq. (ni.4) be the following. Subscript i = 1 

corresponds to the symmetric A, term, the response matrix determined from u, being r;. Indices 

i = 2 and 3 cortespond to terms E, and E2, with one common response matrix tj. This is because the 

cell is assumed to be symmetric, hence the x and y directions must be identical. The fourth term 

correspond to B,, with response matrix r,. 

It can be shown, following Ref [22] and Ref [32], that the continuity of the partial currents 

at cell boundary leads to a finite difference equation for X,. For this, we make the following 

assumption. 

Assumption 1. We assume the cells have different r, matrices, but identical tj and r3 matrices. 
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For the derivation of an equation for X,, we introduce a cell index, and number the cells. 

The cell numbering scheme is shown in Fig. 5. In cell No. j , X,j is the A, term of the entering 

curtent, r,j is the RM of the A, component u,j(x) etc. The angular entering current depends on the 

angular variable Q. To account for that dependence, each partial cunent is replaced by its first 

Legendre components: 

xlj'fi (ni.5) 

where X|<j'°' is scalar, but Xkj"'is a vector (cf Eq. (B.6)-(B.7)) and transforms accordingly. The 

continuity of partial currents is assured by the continuity of X|<j"" and X|,j"', the latter takes opposite 

signs at the two sides of a node surface. 

The X,j'°' term is given by 

r(0) EEeX^ 
j= l k=l 

(in.6) 

X,(, is the average of the entering currents at the four faces. The first term of the entering current 

is continuous at a given face, and is reconstructed from the irreps of the neighboring nodes 

multiplied by the adjoint of matrix E. This matrix is formed from 

e,/2 

e/2 

(01.7) 

The step functions e, are given in Fig. 2. The continuity of the first moments is specified by 
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Ri.x.<? = E E K x ^ r ) . (ni.8) 
j=l k=l 

where the RMs R|,j and rî j are related by 

RKi = i(^k, - 1 ) 0 - r , . ) - ' 

According to Assumption 1, R2j= R3J = R2- Multiplying Eq. (ni.6) by R,o and subtracting (ni.8), 

we get 

- ^ E CPj - "Po) - Bol-o = T^ (R2 - R4)E X ĵê j . (ni.9) 
h-^ j=i h' ' k=i 

Here the matrix Bj is given by 

B] = ^R.K-R.r 

and 

f. = (R,j -R2)*X,1». 

Usually the fluxes are positive numbers of equal magnitude, thus, X4J is often negligible. Then 

(in.9) is the finite difference form of the diffusion equation. What we obtained, is an asymptotic 

form of the transport equation valid for a finite mesh size h. Although it is off the main thrust of the 

present work, we remark that it is possible to derive a generalized diffusion coefficient by means 

of the above considerations. Details are given by Gado et al. in Refs. [15] and [12]. A similar 

decomposition holds in hexagonal and triangular lattices as well. 
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IV. A NUMERICAL METHOD 

1. Formulation of the Method 

The proposed approximation is applied to the solution of the diffusion equation, see 

Appendix B. Consider the following problem. 

A(k)*(x) = 0, in V .jy ,. 
B$(x) = 0 on av ^ ' ' 

where A(k)=A,+l/k*A2 and V is convex and composed of homogeneous regions: 

V = U Vj (IV.2) 

where regions j and j ' are disjoint except the joint boundary dW^: N is the number of homogeneous 

regions. Let aVj denote the boundary of region (or node) j , then 

Vjflv,' = 5V^' = (5Vpn(5Vj,). (IV.3) 

A boundary aVj is called external boundary, if 

av.nav = avj. (iv.4) 

If aVjis not external, then it is an internal boundary. A(k) and B are linear operators. Both A(k) 

and B may involve functions as coefficients. Furthermore, A(k) be such that the Krein-Rutmann 

theorem[21] holds. That is, A is a positive compact operator on a Banach space of functions with 

a cone C of non-negative functions such that for some xeC, a>0 and a positive integer n, for which 
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A"x - axeC . 

In volume j the equation to be solved is written as 

Aj$.(x) = 0 , (IV.5) 

where subscript j refers to region j in which the coefficients associated with each Aj may be 

different. We assume, furthermore, the existence of a value of parameter k which turns the largest 

eigenvalue of A(k) into zero. The associated eigenfunction is nonnegative. We seek the solution of 

BVP (A, B,V). Such problems have been addressed in physics, see Refs. [19,43]. 

There is only one assumption for the proposed numerical method. 

Assumption. It is sufficient to ensure the continuity of face averages of the solution and its 

gradients on internal boundaries. Let av ĵ. denote the joint boundary of volumes j and j ' . Then, with 

Dj, j = 1 ,N, given, the assumption is explicitly expressed as 

|0.(x)dF.. = |l>/x)dF.j 

(IV.6) 
-D,|a„$,(x)dF,j =Dja„<I..(x)dFy. 

a v , aVij 

On external boundaries operator B involves only linear expressions of face averages: 

BO = a. r <l>j(x)dF. + b. r a„0.(x)dF. = 0 (IV.7) 
av, av, 
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The stipulated features of operator A(k) permit the application of the Krein-Ruttmann theorem. 

Thus, there exists an eigenvalue of A which is positive and the associated eigenfunction is also 

positive. The proposed numerical method exploits these properties. 

Definition 1: The function 

e""'Fj(b) (IV.8) 

where Fj(b) # 0 is the Fourier transform of $(x), is called an elementary solution to Eq. (IV. 1). 

Note that an elementary solution meets the first equation of problem (IV. 1), but not the boundary 

condition. 

Remark. When the coefficients in operator A are constant in space, the elementary solution is 

obtained by Fourier transforming the first equation in problem (IV. 1). The transform will be a 

polynomial of b multiplied by F(b). 

Proposition 1. Let G be a symmetry of the BVP (A, B, V). Then F/Gb) * 0 provided Fj(b) # 0. 

Proof If G is a symmetry and e'*"" is an elementary solution, theij e "°'"" is also an elementary 

solution. 

In the elementary solution, Fj(b) can be dropped since it is only a constant multiplier. 

With the help of the elementary solutions, the following trial function is composed 

" F 

*j(x) = E S k ( \ ) e ' V • (IV.9) 
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The notation Cjk(bk) indicates that, through index k, the "c" is connected to a "b" value of the Fourier 

transform of the solution. Here (Cĵ , k = l,...,np) denote free constants that need to be determined. 

The above trial function satisfies the first of Eq. (IV.l) inside Vj. The proposed trial function 

involves nF*N unknowns Cĵ  over V. The internal and external boundary conditions involve the 

same number of equations. The equations are linear in the undetermined constants Cj,;. Whether a 

given equation is solvable or not that depends on the properties of the matrix of the equation. When 

either the first equation or the second in Eq. (IV. 1) is non-homogeneous and the matrix is not 

singular, the Cj,, coefficients can be determined. If the problem is homogeneous, the solution exists 

only if the matrix is singular. This can be assured under the stipulated conditions by setting k so that 

the largest eigenvalue of operator A is zero. To do so, we need the following property of the 

eigenvalue of operator A (see Ref [8]). 

Lemma 1. The largest eigenvalue of operator A is a monotone function of k and tends to infinity 

as k tends to zero. 

Proof Let a(k) be the largest eigenvalue of A. The largest eigenvalue equals the spectral radius of 

A: 

_i_ 

a(k) = ^™ ||A"(k)|l" 

Take two different values of k, say k, and k2>k,. We then have 

a(k,) - « - ,|A"(k,)„^ . l i m ^ O c ^ m M T ^ l.m ^ ( k g W . ,,^, . 
' n-~ ' n - " [[^(kj)!! n^~ ' l|T(k2)|l 

This proves the monotonicity of a(k). Now let k tend to zero. In the eigenvalue problem 

A(k)T = a(k)T (IV. 10) 
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the left hand side is the sum of two terms, one of them is independent of A:, the other is proportional 

to 1/k and tends to infinity. The eigenfunction can always be normalized. Thus, a(k) tends to 

infinity as k tends to zero. By means of the Shmulian theorem,[44] we get that a(k) may not be 

constant for an interval of positive measure, thus, a(k) is a strictly decreasing function. 

This lemma suggests an iteration scheme. Starting from a ko value, we derive elementary 

solutions and combine them as given by (rv.9). We can estimate the largest eigenvalue of A(kfl), 

and if it is positive (negative), the next estimate for k will be kg + Ak (k-Ak), with Ak>0. Starting 

from a positive k,, and a positive initial guess of 4>, an approximate solution can be given. The 

solution is more effective, if the following tricks are introduced. The existence of the largest 

eigenvalue and associate eigenvector can be translated into another eigenvalue problem, and the 

associated matrix can be simplified by means of group theoretic considerations. 

First, at the boundary two linear combinations are formed from the averages of the solution 

and of its normal gradient. The response matrix connecting the two linear combinations is 

calculated from the trial function (rV.9), and the continuity conditions (rV.6)-(rV.7) yield an 

eigenvalue problem. That eigenvalue problem is solved in a two level iteration. At the first level 

we determine the largest eigenvalue of a matrix depending on parameter k, at the second level the 

parameter is set so that the largest eigenvalue be unity. 

Definition 2. Let x be on an external or internal boundary. The following linear combination of the 

solution and a given positive constant (D) times its normal gradient is called an entering curtent (J): 

J-(r) =l(<I.(x) .2Da„<I.(x)). (IV.lla) 

The constant D belongs to that volume V,, from which the normal n is outward. 

Defmition 3. The following linear combination of the solution and a given positive constant (D) 

times its normal gradient is called entering current (J*): 
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J Xr) = 1 ($(x) - 2Da„4>(x)). (IV. 1 lb) 

Deflnition 4. The operator F and E form the face averaged flux and net current respectively, and 

are given by 

E*<I)(x) = r<D(x)dF; F*a>(x) = fd^^{\)dF . (IV. 12) 
F F 

In accordance with Assumption 1, it suffices to prescribe face averaged gradients and fluxes on the 

boundary. Thus, the average entering and exiting curtents on surface i of node j given by 

j ; = (Ey* + DFy*)<D(x); Ĵ  = (E^* - DFy*)<D(x) 

assure the continuity of the solution and the normal gradient, if the condition 

hi = Jij (IV. 13) 

(i.e. the entering curtent at a given face equals the exiting curtent of the neighboring node and this 

is true for both sides of the face) is met on the joint boundary ij. On external boundaries, the term 

on the external side is missing in the above expression, and there Eq. (IV.7) gives the missing term. 

Proposition 2. The entering cunents can be decomposed by means of (A.2) into irteps. The irteps 

of the entering curtent are given by Eq. (11.3), with gi(9) = ( constant) = rrij. 

Proof First we prove that E and F commute with the symmetries of V. A symmetry operation 

transforms the points of integration into each other, thus, E is invariant. The scalar product a„ is 

invariant under the symmetries, thus, a symmetry operation transforms only the range of the 

integration into another range, and hence F is invariant. Therefore, a symmetry operation of V 

commutes with E and F, thus Eq. (A.2) can be applied to project out the irteps of the entering 
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(exiting) curtents J*(9). Thus, the irtep is given by (n.3), but we deal with half-face averaged 

values. Thus, gi(6) is a constant, say m,, which completes the proof 

The elementary solutions are exponential functions. When a symmetry operation O is 

applied to them, the transformation can be transferted from the space variable to the parameter b. 

When the irteps are formed, the exponential functions with different b parameters are summed with 

suitable coefficients taken from the character table. Thus, S|((b,x) \yill be the k-th irtep, a linear 

combination of exponentials, with b parameters which are transformed into each other by the 

symmetries of V. Since there are 2*nF symmetries, the maximal number of terms in the linear 

combination is 2*np. and there are at most 2*np independent linear combinations. Thus, a 

decomposition of the trial function (IV.9) is given by 

2"F 

*jW = E c j k V - x ) . (IV. 14) 
k = l 

The condition 

nijk = SkE*Sj,(b,x); k = l,...,2np (IV.15) 

determines Cj,,. These equations are independent, we get each m,,, by a single division. At the same 

time, we have an explicit demonstration of Lemma 4, that the response matrix is diagonal. Since 

Cjk is expressed with m,,,, which is the given irrep of the entering curtent, and the exiting curtent is 

given by a matrix multiplied by Cj,,, see Eq. (IV. 14), the elements of the response matrix can be 

calculated explicitly. 

Let us introduce the vectors r= ( r „ i\,...,J\) and J = (J,, J^ J ' J composed of the 

partial currents of the nodes in V. Each node has a response matrix R,. Thus, we get the 

relationship 

RI' • 
^ ' (rv.i6) 

file:///yill
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where R = diag(R, R^). The continuity condition Eq. (IV. 13) and the boundary condition on the 

external boundaries, see Eq. (IV.6), give another relationship between vectors J' and J*: 

J" = GJ' . (IV. 17) 

Matrix G accounts for the continuity conditions Eq. (V.13) on the internal boundaries and the 

boundary conditions Eq. (IV.6) on external boundaries. Thus, the structure of matrix G depends 

only on the geometry of V and on the external boundary condition. 

Deflnition 5. The matrix RG is called the response matrix (RM) of region V. 

Proposition 3. If <I> is the fundamental mode eigenfunction of A, i.e. Eq. (IV.9) holds for every 

j , then the exiting curtents are eigenvectors of the matrix RG with the largest eigenvalue equal to 

1. 

Proof: If <I> is a fundamental mode eigenfunction of A in V, then in each Vj we get Eq. (rv.5), 

where the entering curtents of the neighboring nodes are taken as given. From $, we calculate the 

exiting curtents of V̂ . On internal boundaries the fundamental mode solution meets the continuity 

condition Eq. (IV. 13). Thus, we get ' 

J* = RGJ' . 

Repeating this reasoning n times, we have that for arbitrary n 

J* = (RG)"J* . 

This implies that the largest eigenvalue of RG is one, and the associated eigenvector is J* as stated. 
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Thus, matiix RG has a fixed point, and an iteration scheme exists to find that fixed point. 

The iteration has two levels. At the first level the largest eigenvector of R(k)G is detertiiined; and 

at the second, k is set so that the largest eigenvalue of R(k)G is 1. 

The numerical method is flexible with respect to the geometry. All that is required is that 

the boundary conform to a group of symmetry transformations as is the case in, for example, 

square, triangular or hexagonal regions in two or three dimensional problems. The method is 

effective because the problem is broken up into smaller problems; and consequentiy the gain in 

large scale problems may be considerable. 

2. Application to Neutron Diffusion 

The benefit of applying group theory manifests itself in the following simplifications. First 

of all, a multi dimensional problem becomes one-dimensional in the following sense. All space 

dependent quantities will have a given pattern of space dependence, especially in diffusion theory. 

This advantage, recognized long ago, is that we have to deal with the ground only, instead of the 

full volume. The ground is often small enough to allow for further simplifications, e.g. explicit 

analytical solution in a hexagonal node. A further simplification is due to the irteps. Instead of 

solving one big problem, we solve several smaller problems depending on the particular geometry. 

A matrix multiplication includes N' multiplications, if we have 4 irreps (as is the case with a square 

shaped node), we will have 4 times N' multiplications where N is the size of the problem associated 

with a given irrep. An explicit example will be given later. 

The elementary solutions of the diffusion equation (B.l) are given by (B.2), consisting of 

a vector multiplied by a function. Thus, the irrep formed from the analytical solution will contain 

cosine, sine and hyperbolic functions depending on the eigenvalue. In a homogeneous region the 

smallest and largest eigenvalues are real; other eigenvalues may occur in complex conjugate pairs. 

In the latter case the real part and the imaginary part are treated as separate eigenvectors and 

eigenvalues. However, it is sufficient to solve the diffusion equation witii face averaged fluxes and 

curtents in relatively large nodes. • 
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The first computer program for the solution of the neutron diffusion equation[25] used the 

following four e, vectors in square shaped nodes (c.f Eq. (0.3)): 

fl] 
1 
1 

uJ 
; e j = 

f 1 ] 
-1 

1 

l - l J 

; c j = 

f 1 ] 
0 

-1 
I 0 J 

; e, = 

f o) 
1 
0 

l-l j 
(IV. 18) 

The cortesponding analytical solutions are 

S,(x,y) = cosh(A.̂ bjX) + cosh(A|jb2x) 
S2(x,y) = cosh(A|̂ b,x) - cosh(A^b2x) 
S3(x,y) = sinh(A^b,x) * cosh(X^b2x) 
S4(x,y) = cosh(A.̂ bjX) * sinh(A.|̂ bjX) 

(IV. 19) 

Here b, and b2 are suitable unit vectors, see Ref [30]. The pattern of the response matrix calculated 

from the analytic solution is 

diag(R,,R2,R3,R,), (IV.20) 

where R3 = R4 because S3 and S4 are two components of a two-dimensional irteducible 

representation. The off-diagonal elements are zero, see (A.5), and according to the Wigner-Eckart 

theorem, the same diagonal element belongs to different components of a given representation. 

The R| matrices depend also on the structure of the diffusion equation through the X^. eigenvalues 

and the t,, eigenvectors (see Eq. (B.3)), either of them bears properties of the energy transfer matrix 

S in Eq. (B.l). The R̂  matrices have the following structure: 

R, = (1-2R.)- ' (l+2Rj) . (IV.21) 

where 
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Ri = -DT(G,(A,)/F,(X,))T-' (IV.22) 

with D denoting a matrix composed of the diffusion coefficients, matrix T is fonned from the 

eigenvectors t̂  and the part in <> is a diagonal matrix labeled by index k. G, and F, in the k-th 

entry is formed by means of operator F and E, respectively, from the analytical solution Si(x,y) with 

Xi,. In the first hexagonal code (see Ref [29]), the following vectors have been used: 

/ .' 

> ^ 

; e, = 

f 1 1 

i, - 1 , 

; ^3 = 

f 2 ] 
-1 
-1 
2 

-1 
l - l I 

; e, = 

( 0 ] 
1 

-1 
0 
1 

l - l J 

; ' 5 = 

f 2 ] 
1 

-1 
-2 
-1 

I 1 J 

; ^6 = 

( o] 
1 
1 
0 

-1 
l - l ) 

(IV.23) 

In the elementary solutions, one b value has been associated with each face (e.g. it may 

point to mid or comer points). The irteps of the solution are formed as shown by (IV. 14). 

According to theorems A. 1 and A.2, the response matrix will take the form 

diag(R,,R2,R3,R,,R,} 

in hexagonal shaped nodes. The elements of the response matrices are analytical functions of the 

node size and material properties (i.e. eigenvalues and eigenvectors of matrix S). The structure of 

the R| matrices is the same as with the square shaped nodes. 

The numerical solution has two major steps. The determination of the largest eigenvalue 

of A(k), and the determination of k so that the largest eigenvalue is 1. There are procedures 

available to solve the first problem, see ARPACK, LAPACK^ packages. The methods may vary 

from the simple power method to more sophisticated acceleration methods, see Ref [20]. In the 

second problem we simply need a root finding routine. The responses of the nodes are calculated 

'ARPACK is available at site ftp://ftp.caam.rice.edu/pub/people/kristyn, LAPACK is 
available at more than 600 web sites including http://netlib.org/lapack/. 

ftp://ftp.caam.rice.edu/pub/people/kristyn
http://netlib.org/lapack/
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from the analytical solutions and the entering curtents are decomposed into the e, vectors. After 

calculating the irteps of the exiting curtents, the exiting curtents on the faces of the node are 

reconstructed from the irteps. Instead of calculating the spectral ratio, the following physical 

argument is used. When the new entering curtents are known in every node, the new estimated k 

value is determined from the overall neution balance. This method, however, has serious 

limitations. Before passing on to numerical results, let us consider the gain of applying group 

theory. The first advantage is that using the irteps, we actually deal with four one dimensional 

problems. The problems are independent. In NG energy groups, to get the exiting curtents, we have 

to perform 36*NG*NG multiplications. Using group theory, we need 4*NG*NG multiplications. 

As to the determination of the response matrix elements from an analytical solution, we have to 

invert one matrix of order 6*NG and to multiply it with another matrix. Using group theory, that 

work reduces to four times (i.e. four irteps) the multiplication of two diagonal matrices F and G of 

order NG and two multiplications by T and T' . Additionally, we have to invert one matrix, T, of 

order NG. A further gain is, that having an analytical solution, the iteration may converge faster 

than with other trial functions. 

Below, we investigate the relationship to the two most widely applied methods, finite 

difference and finite element methods, see Ref [39]. An analytical solution allows one to start 

from the analytical solution and to derive the approximations employed in diverse algorithms from 

that accurate solution. Expression (IV.9) satisfies the DE at each point inside V. Below we show 

under what conditions that analytical solution leads to the trial functions applied by different 

methods. 

First, the analytical solution (IV.9) allows for a derivation of a modified FD form which 

is exact in the sense that the same FD equation can be obtained from the following conditions: 

- the solution is satisfied at every point in V; 

- fluxes and curtents are continuous at the node surface in the integral sense; 

- the balance equation is formulated only with average fluxes. 
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The derivation that follows is for hexagonal nodes. The space dependent flux of problem (IV.l) 

is written as 

<I.(r) = T((F^(r))c. . (F„(r))c„) , (IV.24) 

where matrix T is formed from the eigenvectors tĵ . The space dependent part has been decomposed 

into an even and odd part along with the corresponding constants that have been separated out from 

the Ŵ CB) functions. Let us consider the joint boundary of two nodes and the flux averaged over 

the joint face. The nodes differ in all the three components (viz. T matrix, c constant and F 

function), a subscript which will be taken into account by a sunscript. The continuity condition of 

the face integrated fluxes reads as 

T,((Foe)c„, * (F^C„„)) = T,((F,^)C,^ . (F,„)C,„) . (IV.25) 

The boundary flux Ô  can be given as the average of the boundary fluxes of the two nodes, and the 

coefficients can be eliminated by means of the fluxes ($j) at the node centers: 

•̂ b = T„((F^)r„'<I.„ . ( F ^ ) C J = T. ((F,,)T,-' * , . (F , „ )CJ . (1V.26) 

Similarly, the continuity of the normal current is assured by 

-{Do)T„((G„,)T„'<I., . (G„„)c„„) = (D,)T. ((G,,)T.-'<I., . (G,„)C.J . (IV.27) 

Thus, the boundary curtent is a linear expression of the fluxes at the node centers. 

Introducing the following matrices 
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Pi' = T,<F^>T;\ 6, = <D>7-,<G,,>r-' 

/o = To<F,>; tl„ = <D„>T,<G,> 
(IV.28) 

we obtain the boundary flux and curtent 

*b = [dof«' - d,f-']-' [6„$„ . 6,*,] (IV.29) 

Jb = [ W - f.d.']"' [(f„d„* - p„'$J - (f,d.->-p,'a.J] . (IV.30) 

In Eqs. (rv.26), the space dependent part of the solution has been integrated over a face, in (IV.27) 

the normal gradient has also been integrated over a face; these transformations are in <>. The two 

latter equations allow us to express the boundary fluxes and curtents as linear expressions of the 

flux at the respective node centers. For the balance equation we need an expression for the volume 

integrated flux. This is achieved by integrating the analytical formula for the flux over one sixth of 

the node, i.e. over a regular triangle, to artive at 

*oi = \% - % [[dofo' - d,f,-']' [6„<I.„ . 6.4.,] - p j o j . (IV.31) 

The expressions for the other five triangles are similarly obtained. (Matrices Vg and w„ denote 

integrals of </̂ oe> ̂ ^'^ <^DO> O^̂ "" °n^ siyX^ of the hexagon.) 

In order to get the traditional FD scheme, we retain only the fundamental buckling in 

expression (IV. 14), and assume that 

A,r«l , 
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and the constant and linear terms approximate well the exponential in (IV.9). One then artives at 

the following expressions for the boundary flux and curtent: 

Jb = - ^ [Ob - *o(0)] . (IV-33) 

which are the fundamental expressions of the finite difference equations. (The bold flux and current 

represent vectors formed from the energy group fluxes and curtents. Diagonal matrices are denoted 

by <>. Subscript b refers to the boundary.) Thus, the flux at the node center equals the average 

flux. 

The desire to extend the FD formalism beyond the small mesh limit is justified. Introducing 

a matrix coefficient set, which couples the different energy groups, can achieve that goal and both 

the boundary flux and the current can be expressed as linear functions of the fluxes at the node 

centers, whatever the mesh size, whatever the material properties of the nodes. 

In order to get the FE method expression for the flux, let us retain the first few low order 

terms in the space dependent part of expression (IV.9): 

Y.cr"*Rs-
'"^' (IV.34) 

n=0 

The remainder R^ tends to zero in Eq.(IV.34) as N tends to infinity. This approximation is 

reasonable, if the expansion is confined to a finite small volume and the cross-sections are such that 

the constraint Xj<\ holds for every k. In most reactor models, this is true only for the fundamental 
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eigenvalue but not for the transients. Consequently, the approximation is better for volume averages 

than for pointwise quantities. This approximation is called nodal expansion method (NEM). Usually 

the unknown Cg„ coefficients are expressed by face or volume averaged fluxes or curtents. The 

coarse mesh finite difference (CMFD) method stops at n=0; the flux is considered as constant in 

a node. The curtent is eliminated from the integral balance with the help of the FD formalism 

presented above. When the unknown coefficients c^ are expressed by pointwise fluxes in every 

node, we get the FE method. 

The proposed method can be formulated as a variational problem. We look for the minimum 

of the linear functional 

a = (Y(x); A$(x))v (IV.35) 

where 'i'(x) is an arbitrary function. Substituting the diffusion operator for A, and using the Green's 

formula, we get the following expression: 

9E = (A*'F(X); «l>(x))y + (a„'P(x); «>(x))̂ ^ + (l'(x);a„$(x))^^ . (IV.36) 

For a minimum, each term in the above equation must vanish. The volume integral vanishes when 

'F(x) is the adjoint function. The surface integral can be expanded into two terms, and when (IV.2) 

is introduced into (IV.35), the surface integral i£ reduces into internal (ASf,) and external (ASf̂ ) 

surface integrals if = ASf, + Aif̂ : 

^a , = E /'P(x)(an^<l'j(x) - 3„.'<l>j(x))dF + |a'F„(x)(Oj(x) - ${(x))dF (IV.37) 

^ a , = E /1'(x)(a„«I>j(x))dF + |aT„(x)(<I..(x))dF . (IV.38) 
j ' ' av av 
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In Eq. (IV.37), we excluded those faces of aVj which are external surfaces; only those nodes 

contribute to integral (IV.38) which have at least one face on the external surface dW. Now the 

solution is expanded in terms of a set of orthogonal basis functions as follows. Let 

«'W=EEcA(x). av.39) 
j=l k=l 

The basis functions possess the following properties: for all k, (Pĵ (x)=0 if xeV-V^ whereas in Vj 

they obey Eq. (IV.5). Furthermore, %J.\) transforms as the k-th irteducible component of the 

solution to the DE in volume Vj. The basis functions are orthogonal by Theorem A.2. In order to 

find the Cj,, coefficients, we require either component of S£ to be zero when the weight functions are 

ê  see Section H, in each surface integral. Because of the basic Lemma, the solution in Vj 

transforms according to the k-th irtep, if the boundary condition is proportional to e,,. Selecting the 

weight function T̂ ^ proportional to ê  in volume V̂  and zero elsewhere in V, and making use of 

Theorem A.4 we get a set of equations for c .̂ : 

(^jV.Acp,,)^ = 6^56,,, [(cĵ atpj, - c^,,^(Pjv^ - (cjk-Pjk - S'k^iicivJ- ( i ^ 40) 

This set is solved recursively in Section VI under the hypotheses that the diffusion operator is 

completely continuous and the iteration converges from any initial vector not orthogonal to the 

solution. 

Various numerical benchmark problems have been investigated and compared to the 

standard methods. We present two cases for square and hexagonal geometry. In square geometry, 

volume V involved 28 squares of 20 cm x 20 cm. The order of the eigenvalue ertor is -10"*, see 

Ref [28]. In hexagonal geometry, abundant experience has been collected for light water reactors. 

There the distance between the centers of two hexagons is 14.7 cm and 23.4 cm, see Ref [32], the 

ertor of the eigenvalue is in the order of lO''. A short intercomparison is given from Ref [30]. The 

test case presented is GA9A1, (see Ref [ 1 ]), which models a high temperature gas cooled rector 
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core, in hexagonal geometry; the distance between the centers of neighboring hexagons is h = 

36.2 cm. The codes in the comparison are well known production codes. The reference eigenvalue 

is kj(f = 1.1183 ± 0.0001, obtained by exU-apolation. Table n compares the eigenvalues and the ertor 

in the power distribution (AP, in percent), (see Appendix B). The code HEXAN incorporates the 

above presented group theoretic considerations. If a date is not available, star {*) is used in Table n. 

Table 11. Comparison of GA9A1 Test Results 

(*-datum not available) 

Program 

BUG 180 

GRIMHX 

VENTURE 

VALE 

DIFGEN 

M2 

HEXAN 

Reference 

' 'eff 

1.11815 

1.11863 

1.1186 

1.11596 

1.117 

1.11824 

1.11888 

1.1183 

Points/Node 

48 

6 

54 

3 

38 

1 

1 

* 

AP 

0 

3.1 

* 

3.3 

4.7 

* 

2.2 

* 

At present there exist several multigroup diffusion theory codes in two or three dimensions 

[3,4, 17, 32] which include to various degrees the above group theoretical principles. These codes 

are routinely applied in nuclear reactor design and operation to problems which require up to 3490 

nodes, and two to four energy groups at each node. The maximal enor in the nodewise average flux 

is 2-4%, the ertor of the eigenvalue is in the order of lO"*. 
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Results of a three dimensional 

benchmark with hexagonal nodes is presented 

in Fig. 4. The distance between the centers of 

two hexagons is 14.7 cm. The height of the 

hexagons is 25 cm, the lower part has one 

composition and the upper part is different due 

to the control rods in positions 1 and 7. Each 

hexagon is subdivided into 10 axial layers, 25 

cm each. The sum of the powers of the 10 

layers are shown in Fig. 4. The reference 

solution was derived by finite difference 

version [24] of the code DIF3D, by means of 

extrapolation. The finest mesh was 1.4145 cm 

triangular, and 2.5 cm axial. The maximum deviation between the DIF3D solution solution and the 

extrapolated solution was 0.66%. In Fig. 4 the upper number is a numbering of the hexagons, the 

middle number is the relative power density calculated by HEXAN, the lower number is the 

difference in percent between the HEXAN power density and the extrapolated FD solution. The 

error in Fig. 4 increases towards the external boundary (assembly Nos. 59, 55, 56, 52, 47, 41, 27, 

and 19) because of the poor representation of the boundary. The maximum error is 1.2%. HEXAN 

used only one entering curtent value per face per energy group. 

Fig. 4. SEflDEL Benchmark Results 

V. PROBLEM SIZE REDUCTION 

In Section IV, the solution of a boundary value problem was reduced to an algebraic 

problem with one unknown per face, by an approximation based on symmetry projections of an 

elementary solution. It will now be shown that the size of the algebraic problem can be reduced 

further, and one unknown per subvolume is sufficient, if only the continuity of face averages is 

required. In the second part, we deal with the application of group theory to non-symmetric 

operators, i.e. when operator A may have no symmetry at all. 
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1. Elimination of Asvmmetnc Components 

Although the finite difference method is bound to fine meshes, an indisputable benefit of 

the method is its simplification; only one unknown per node is involved. Following an earlier 

work,[32] it will be shown that we are able to reduce the size of the problem with the help of the 

continuity conditions of the solution and its gradient. The irteps turn out to satisfy an equation 

which is an extension of the finite-difference formula; and after eliminating the non-symmetric 

terms, an equation is obtained for the symmetric component (unit representation). It is known that 

this is the only representation contributing to node averaged solution. 

Thus, we obtain an equation for node averages by writing the entering currents at the four 

faces of node j into the following form: 

ih] 
Ij2 

h 
I . 

\ IV 

= XJ1 

• f 

1 

I 

.1 , 

^ ^ p 

• 1 ^ 

0 

-1 

, 0 , 

^ X p 

' 0 ^ 

1 

0 

> - l , 

^ ^ ^ 1 4 

• 1 ^ 

-1 

1 

> - l , 

(V.l) 

where 

X„ = (Ij, - 1,2 * Ij3 - Ij4V4 

Xj2 = (Ijl - Ij3V2 

Xj3 = (Ij2 - Ij4V2 

X,4 = (IM - 1,2 - 1,3 - Ii4V4 

(V.2a) 

(V.2b) 

(V.2c) 

(V.2d) 

Note that the vectors utilized in Eq.(V.l) are just the simplified irteps shown in Fig.2 and denoted 

by Cj, c.f Eq.(n.3). The following node numbering notation is specified for the continuity condition 

(IV. 13). The node with subscript j = 0 is surtounded by nodes j = 1, j = 2, j = 3, and j = 4 in such 
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a way that node i attaches to node j = 0 at side i, see Figure 5. With the help of the response matrix 

(IV. 16), the exiting cunents of a given node are expressed as 

i; = R .̂X .̂e, . R^,X,e, . R^,X^,e, ^ Rj^X.̂ e,. (V.3) 

After reartanging the terms, Rj4 = Rj, and the continuity condition (IV. 13), give a set of equations 

for the irteps Xj„ Xj,, X^ and Xj4, j = 1,...,N as follows: 

7 E N , - R,,x^,) = Qoi . (V.4) 

where the source term Q ,̂ is given as 

2 o i - ^32^32 " ^12^12 * ^43''^43 " ^23-'^23 * ^U^li ^14^21 

+ ^^24^24 * ^34-'^34 ^ 4 4 ^ 4 4 

(V.5) 

Other irteps satisfy similar equations of the form 

^ E(Xo, -v>^i'.) = Qo,. (V-6) 

where kj is a constant. The rj. coefficients are composed of the response matrices and the source is 

independent of Xĵ . The above expressions are slightly modified forms of the finite- difference 

equations. The first equation, (V.4) is exactly the finite-difference equation. Thus, the set of the 

continuity equations has been reformulated as a set of coupled, modified finite-difference equations. 

The structure of the equations is as follows: 

Xi = EMyX. . • (V.7) 
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and using the following partitioning x = X,; y = (X2,X3,X4), we can eliminate y: 

M M 
V y yy/ 

X 

\y/ 
(V.8) 

y =(I -Mj-'M^^x (V.9) 

K * M,,(1-MJ-'MJX = X (V.IO) 

The only condition is the invertibility of (l-M^^). To show that M̂ y is invertible, it is sufficient to 

show that the rows and columns of the lower matrix are independent. M̂ y is a three by three block 

in Eq.(V.7), which we rewrite as 

M = 

F2 ^23 ^24 

I32 F3 134 

[(U2 I43 F4, 

where F- is the modified FD matrix associated with X ,̂ and q̂ j is the source term representing the 

contribution of Uj in the equation for Xj. Every F, is invertible because the modified FD problem has 

a solution with a source, q̂ j differs from Fj for all i and j . Thus, both the rows and the columns are 

linearly independent. 

After the above reduction, we get a set of equations with one unknown per node. When we 

deal with the diffusion equation, the unknown is the node average flux, the average value of the 

solution. This is because the integral balance gives an immediate relationship between u, and the 

average flux. That reduction means that the number of unknowns reduces by a factor of four (in 

square nodes) or six (in hexagonal nodes) without introducing any approximation. 
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2. Non-Svmmetric A Operator 

Let us consider the BVP (II.2). In the previous sections, the 

investigations have been limited to cases when there is a group which leaves the 

problem invariant. As we saw in Section n, given an arbitrary group, the 

solution space can be split into orthogonal subspaces. Furthermore, if the 

elements of the group commute with the BVP, the subspaces remain separated F'g- 5- Node 
Numbering 

during the iteration because any operator utilized in the iteration will be 

diagonal. 

In this section, the investigation is extended to cases where the elements of the group do not 

conunute with the operators in the problem. It will be shown, that the iteration can be transformed 

to a form where subspaces S"" of the solution space S remain linearly independent during the 

solution. Thus, any group induces a splitting of the solution space into independent subspaces. 

The problem is discussed in the following formulation. The iteration is summarized as the 

numerical solution of the problem 

A$ = a<E> , (V.ll) 

where A is a matrix, and 4>eS is the solution to be determined. Let a G group be given, e.g. the 

group transforming the region V into itself We assume A not to commute with the elements of G. 

Then, A can be decomposed into irreps the same way as a function is decomposed, see Ref [25], 

Section 6.1. Let the decomposition of A and of $ be 

A = E E Ar (V.12) 
k a 

* = EEcr<'- (V.13) 
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Superscript (a) refers to the invariant subspace, k assigns the basis in the subspace. In order to 

simplify the notation, the irteps are renumbered from 1 to h. The eigenvalue problem (V.l 1) is 

written as 

E(Ai)E(cj<I'j) = aEck<I'k- (V.14) 
i j k 

Let us multiply this expression by 3)p: 

E M i * j ) = aCp (V.15) 

because of the orthogonality of the basis vectors. According to the Wigner-Eckart theorem, see 

Appendix A, the product A,$j is a direct product that can be decomposed into irreps with the help 

of the Clebsch-Gordan coefficients (in short CGC) Ĉ y and we arrive at 

i j 

where 

F f $ ;C ..0]c. = ac (V.16) 
4 : ' r p' p.ij p̂  J p 

A.* =TC,..\ . (V.17) 
k 

The p-th component of the solution vector contains only contribution from those A.^^ products, for 

which the CGC is non-zero. In other words, Eq. (V.I7) has the following stnicture: 

i :U,<I .^=a$ . (V.18) 
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where the elements of the block matrix U,; is composed of the A„...,Ah components of A. 

Furthertnore, the matrix V,^ is symmetric because the CGCs are symmetric. Let P transform Uy into 

a lower triangular matrix L: 

PUP 

then, it suffices to determine the first element of P$ in order to find the solution of Eq. (V.ll). 

Indeed, let us multiply (V. 11) by P from the fi-ont and use the identity $ = F 'P*. Because PUF' 

is lower triangular, the first equation reads as 

L„(PO), = a(P<I.), . 

This is an eigenvalue problem in a subspace of S. If that eigenvalue is solved, the other elements 

of P4> can be determined by the forward elimination, backward substitution method. 

Proposition 4. Let A be a given linear operator, G a given group of h elements mapping S into 

itself Then the iteration 

^ \ - a,1>k.P *k e S for k = 1,2,. 

can be reduced to the subspace (P$),, where P is a matrix which transforms U,̂ , into a lower 

triangular form. Here $ is the vector of invariant components (induced by G) of the solution, the 

Ujj matrix is formed by the CGC according to (V. 17). 

Let us consider the C, group as a particular case with external source. Let the equation be 

the diffusion equation 

— - + f(x) 
dx^ 

*(x) = q(x) 



-45-

where f(x) is given. Let the solution space S be the functions of twice differentiable functions in 

the interval V. The solution is decomposed into even (<I>J and odd ($ J components. The operator 

is also decomposed into even (AJ and odd (A,,) parts. The CGCs give the even and odd 

combinations: 

(A. A\(9} 

A„ A^ 
V o e 

0„ 
V »/ 

^q,^ 

^1o/ 

which is transformed into lower diagonal form by 

P = 
^A- ' -A- ' 

A"' A"' 

and we have to solve 

and 

(A;'A, - K'\h = K"'qe - A;'qJ 

2% * (A;'AO + A;'AJ<I.„ = (A;'q^ . A;'qJ 

The first equation is in the even subspace, the second one in the odd subspace. It suffices to solve 

the first problem, and substitute $ j into the second problem. Hence, even if the operator does not 

commute with the group, the problem can be reduced. 

If the investigated volume is subdivided into nodes and the connection between the node 

is taken into account by prescribing the continuity of certain quantities, c.f (IV. 13), the above 

derivation is meaningful only if the continuity equations can also be reduced. In Section IV. 1, we 

showed how to derive finite-difference like equations from the continuity conditions. Using similar 

arguments, we show how to eliminate the non-symmetric components from the continuity equations 
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retaining only the unit representation, or, what is equivalent to it, the node averaged value of the 

solution. 

Put the continuity conditions into a linear equation as 

E G J ^ = O (V.19) 

here subscript i and j refers to the node number and to the face, respectively. The geometry matrix 

G has 0 and a combination of RM elements as entries, see Eq. (rV.17). The J* values on the 

boundary are transformed into irreps as 

hi = E"jk"ik • 
k 

where o) is an orthogonal matrix. Introducing new variables as 

(V.20) 

H,k = E G ij jk 

and 

^k = ( " lk - - "Nk) 

we artive at the following expression: 

C C C 
^ 1 1 "-12 • • • ^ I n , 

C , C , C 
V "F' V "F"F/ 

(.,\ 

v 
V "f/ 

(V.21) 

The rank of the matrix in this equation is the same as the rank of matrix G because every utilized 

transformation is invertible. The rank of matrix G is np*N„„j, -1 because if any element of J* is 

given, Eq. (V.19) has a unique solution. The elements of the first row are not zero thus every 
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component is expressible with v,. Hence, the continuity equations can be reduced to the symmetric 

component, which in turn is proportional to the node average. 

VI. ARBITRARILY ACCURATE COARSE-MESH SOLUTION TO 
NEUTRON DIFFUSION 

The present Section is devoted to an application of the results of Section IV. to the neutron 

diffusion equation. We assume volume V consists of square sub volumes (nodes), and the number 

of neuU-on energy groups is two. 

The notion is that the trial functions (IV.8), with several b values satisfy the diffusion 

equation inside each V,. Then, if the trial functions can be made to match a boundary value close 

to the exact solution's boundary value, expression (rV.9) results in an arbitrarily accurate solution. 

Let q)(0 be a function that gives the exact boundary value. Let us expand (p into a Fourier series, 

then it is clear we have to retain those b values which are present in the Fourier spectrum of (p. It 

is known that the entering curtent distribution on the boundary is adequately represented by low 

order (up to second order) polynomials.[48] If the values (b,,...,b|() are chosen so that the first k 

moments of the tiial function take given values, the ertor inside V, will depend on the residual term. 

Let the (p(5) be sufficientiy smooth then we can decompose the function into a polynomial part and 

a residual as 

<P(0 = E c , e * 6„(0. 
k = l 

Then, an upper ertor bound of the trial function will be 

6$„(D = e„(0*E(0 

where E(£) is the solution to the diffusion equation with the condition that the solution is unity at 

every boundary point. E® is a bounded function, e„(0 tends to zero as n increases (see Weierstrass 
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approximation theorem in Ref [39] p. 28). Thus, in principle arbitrary accuracy can be achieved 

inVj. 

It follows from the discussion of the variational principle in Section IV, that we may find 

the amplitudes of the irreps in each cell recursively so that the entering curtent (or the flux) is given 

by the irrep of the neighbors taken from the previous iteration. It is reasonable to iterate for ĉ ,,, 

k = 1 np in one step, instead of repeating the iteration np times. This can be achieved by taking 

proper account of the boundary condition. In node], we collect the entering curtent and decompose 

it into irteps. Then the irteps are treated separately and after the last irtep the exiting curtents are 

reconstructed on the faces. Thus, the calculation consists of the following steps, see Refs. [31, 33]. 

(1) Starting from a positive initial guess, we determine moments of the entering 

curtents on the boundary. Each moment is decomposed into irteps by the projector 

(A.6). The result is as given in Section U, E,\, where i is in [-H,+H]. Let the irteps 

of the zero-th moment be (I,, Ij, I3,14), the first moments (J,, Jj, J3, J4), the second 

moments (K,, K2, K3, K4). The irreps will be as given in Table 111. (We recall that 

the index determines the values at the four faces, e.g. I„ J, and K, is proportional to 

vector e^ see Eq.(I1.3).) 

Table III. hreps of At Most Second Moments 

Irrep 

A, 

A2 

B, 

B2 

E, 

E2 

Analytical Solution 

cosh(a*x)cosh(b*y) + 

cosh(a*y)*cosh(b*x) 

sinh(b*x)*sinh(a*y) -

sinh(a*x)*sinh(b'''y) 

cosh(a*x)cosh(b*y)-

cosh(a*y)*cosh(b*x) 

sinh(b*x)'*sinh(a*y) -

sinh(a*x)*sinh(b*y) 

cosh(a*x)*sinh(b*y) 

cosh(a'''y)*sinh(b*x) 

Vectors 

(I„ K,) 

(I2. K,) 

(J,) 

(J2) 

(I3.J4.K3) 

(l4.J3,K4) 
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(2) The cortesponding analytical solutions shown in Table HI., have also been derived 

by (A.6), where the response matrix was calculated as in (rV.21) and (IV.22). ft 

should be noted that the different moments mix in some representations. For 

example, when using second order polynomials, we have the following basis in the 

six classes of the square: (I„K,), (l2,K2), I,, Jj, (13,14,13), (^.Jj.Kt). Here 1̂ , 4 and K,, 

are the amplitudes of the zero-th, first and second moments, respectively, each 

proportional to ê . The first two vectors belong to the unit representation, and so on. 

Altogether, we have two two-dimensional, two one-dimensional and two three-

dimensional representations. The final form of the response matrices is given 

below. In the first irtep, we have two vectors and the RM is: 

i X* 

K, 
= T 

V ' ^ 2 ' l l -^2^21 

(g'f g'f ) 

^g"/ , ! g'jf̂ ,̂  

-1 

*T-' 
'ir' 

Ki ' 

The second representation is again two dimensional: 

' i ; ' 

K; 
\ 2 1 

= T 
•^ V\2 •^0*22 

i , '^2 ' l2 ^^2^22^ 

^ofl2 ^of22 

g'jf,2 g'2f22_ 

-1 

. T ' 
' I 2 ' 

K2' 

whereas the third representation is one dimensional: 

T[J^,f,4]*[^,f,4]"'T"'J2 

The fourth representation is again one dimensional: 

j ; = T[J^,f,3]*[^,f,3]-'T-'J,- . 

The fifth representation is three dimensional: 
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I3 

j ; 

K3* 

= T 

9"f 9' f 9' f •^o'i6 •^o'26 '^o'se 

9' f 9' f 9' f 
• ^ l ' l 6 " ^ l ' 26 " ^ l ' 36 

,^4\b '^2hb -^-^ib, 

^ofl6 ^of26 % 6 

^ l f l 6 ^ l f 2 6 ^ | f 36 

,^2^16 ^2f26 ^2f36, 

and the sixth representation is also three dimensional: 

/ .> 
I4 

J3* 

.K^ 

' 

= T 

V 

9' { 9' { 9' f 
•^oMs ' ' o ' 2 5 ' ' o ' 3 5 
9' f 9' 1 9' ^ 

9' f 9' f 9' f 
• ^2 ' l 5 • ^ahs •^2 '35/ 

^0^15 % 5 ^of35 

^lf l5 ^lf25 ^lf35 

^2fl5 ^2f25 ^2f35 iK4-j 

In the above expressions, the following notation has been employed. Operators ^, and .9i form the 

i-th moment of the entering and exiting current. The second subscript of the functions /refers to 

the irrep; the first subscript to the buckling vector b. The continuity of the partial curtent is assured 

in one iteration step by taking the exiting currents of the neighboring nodes from the previous 

iteration. They are decomposed into irreps, the exiting curtents of the actual node are determined 

and then we pass on to the next node. One iterational step includes a sweep through all nodes. 

(3) Making use of Lemma 1 in Section IV, the dominant eigenvector is determined. 

This will be the exiting curtent vector at the internal and external surfaces. 

(4) By means of Lemma 1, we iterate on the free parameter in the neutron cross-

sections (c. f (B.4)) to set the dominant eigenvalue 1. In the iteration the a(k) 

function is locally approximated by a second order polynomial. 

(5) When the iteration has converged, the flux is determined from the analytical 

solution. 
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Such a procedure can be expanded to include higher moments. The more moments are retained, the 

more buckling vectors need to be used and the response matrix becomes cortespondingly larger. 

Thus, the number of retained moments depends on the required accuracy. 

To illusti-ate the capability of the method, we give the results of a simple test problem. The 

solution of the two energy group diffusion equation is sought in a square which consists of one 

material with the two energy groups neutron cross-sections given below. 

D, = 1.5 D2 = 0.4, 2,, = 0.01 S,2 = 0.08 2,2 = 0.02 vS„ = 0 vS^ = 0.135. 

The region is a square, with sides of 100 units in length, and the boundary condition is $ = 0. The 

solution to this problem is ^(x.y) = cos(x*7i/100)*cos(y*7t/100) and k̂ ^ = 1.01397. The eigenvalue 

obtained by the algorithm given above is k^„ = 1.01375, the ertor of the spatial distribution is less 

then 10"̂ , whereas the ratio of the energy group 2 to energy group 1 flux indicates an ertor of 0.5%. 

In the calculation the buckling vectors B, = (0.51, 0.7399), B^ = (9.875, 1*9.824237), 

B3 = (1.0033,0.0813074) have been utilized. The results are rather sensitive to the selection of the 

B vectors. 

VII. CONCLUSIONS 

The present work demonstrated the application of group theory to boundary value problems. 

In Section 2, we formulated three important statements. The first, asserts the smoothness of the 

irteps, i.e. if the boundary condition is n times differentiable, so are its irteps. This statement 

assures that a numerical procedure based on irteps will not result in a less smooth solution than the 

tme solution. The second statement, the Basic Lemma, asserts that the solution belongs to the same 

irtep as the boundary condition. The third statement expresses a feature of the boundary condition, 

that is, the irteps of the boundary condition can always be expressed by step functions, see 

Lemma 2. Although Lemma 2 is a straightforward consequence of Theorem A.2., it has a rather 

important implication in physics. Namely, any boundary condition can be decomposed into simple 
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su îctures, which model the environment of the investigated volume. These simple structures permit 

one to calculate the "responses" beforehand, prior to an iterational procedure. 

A specific numerical procedure has been proposed in Section IV. The method provides an 

interpolating function that satisfies the equation everywhere inside the nodes, and has as many free 

coefficients as are needed to assure the required continuity condition at node interfaces. The 

proposed algorithm has been applied in neutron diffusion production codes and which have been 

employed in the design and operation of nuclear power plants. In a typical problem, the number 

of nodes is 10' - 10^ the node sizes are in the range of 10-20 cm, the achieved relative accuracy is 

lO'" in eigenvalue and l-3%in the power distribution (practically the solution). The results have 

been compared to the two best known numerical procedures (finite difference and finite element 

method). A variational formalism has also been given to stress the advantage of using symmetry 

considerations in the solution of boundary value problems. 
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APPENDDf A. GROUP THEORY PRIMER 

This appendix summarizes the results of group theory applied throughout the present work. 

The below cited results are available in standard textbooks. 

Definition A.l. Let us consider function f(x). The transformation operator associated with 

operator O is defined by the following identity in x: 

Of(x) ^ f(0-'x) (A.l) 

where O is the matrix associated with operator O. 

With this definition the set of symmetry operations (symmetries) is made isomorphic with 

the set of matrices associated with the symmetries. 

Deflnition A.l. O is called a symmetry of region V if G maps V into itself 

Deflnition A.3. O is called a symmetry of operator A if AG=GA. 

Deflnition A.4. A set of matrices under matrix multiphcation, {0„ Oj, ..., 0„), which is 

homomorphic with the group (O,, O2, ...,0„} is said to be a representation of the group. 

Deflnition A.5. A representation is said to be reducible if an equivalent representation exists in 

which each matrix O, has the form 

Oi = 
[A. C,̂  

«o \ 
(A.2) 

'Representations (A,} and {B,} are said equivalent if there exists a matrix X such that 
B,=XA,X' for all i. 
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If no such a representation exists, the representation is said to be an irteducible representation of 

the group. 

Deflnition A.6. Let |0,) be an irreducible representation and let {f",f^',.|.,f^' ] be 1 , 

eigenfunctions of the symmetry operations for which 

Of*' = E O j , f,̂ ' (A.3) 
i = i 

holds for O = O, 0„. A function f', is said to belong to the k-th row of the irteducible 

representation O, if there exist partner functions [i"'„f' f*''",, f*''*"i f'\] such that the above 

equation is satisfied. 

Shur's Lemma. If there exists a matrix M, not necessarily one of the representation matrices (GJ, 

such that MG, = G.M for all i, then 

a. if {G,} is irreducible, M is a constant matrix; that is, M=cE where c is a number, E is 

the identity matrix. 

b. If M is not a constant matrix, then (G,) is reducible. 

Proof Ref [13], p.24 

Theorem A.l. Any representation of group G is equivalent, by means of a similarity 

transformation, to a unitary representation. 

Proof Ref [13],p.22 

Theorem A.2. Let S commute with all O,. Let f\ and g*",. belong to different irteducible 

representations. Then 



-59-

(ffU.r')=l6„^E(eg.^') (A.4) 
Ji j 

and 

(f«>,sg,r') = ^6.,^^E(fi'^sg,r'). (A.5) 
Ji j 

Proof Ref [49], p. 115-116. 

The following theorem, taken from Ref [13], p. 52-55, is a summary of the relationship 

between the eigenspace of an operator (in our case A) and a group commuting with A. The 

relationship is twofold. The eigenfunctions of A may serve as basis functions of the irteducible 

representations. The symmetry operators on that basis are represented by matrices and the 

eigenvectors of those matrices are linear combinations of the eigenfunctions of A, furthermore, they 

are basis vectors of an irteducible representation. The reverse statement is: If irteducible functions 

are used to represent operator A by matrices, the resulting matrix will be diagonal, the elements 

belonging to partner functions of a riven irtep are the same. 

Theorem A.3. 1. The eigenfunctions of operator A generate a representation of G. 

2. Linear transformations to new eigenfunctions generates a representation 

equivalent to the original. 

3. If the eigenfunctions are orthonortnal, then operator O is merely the matrix 

associated with O. 

4. The representation so generated is unitary. 

5. If the degeneracy is normal, the representation is irteducible. 

6. An arbitrary function $ in the space of A can be used to construct an 

invariant subspace by forming the operation 0 $ for all O in G. 

7. Functions which transform according to two different irteducible 

representations of G are orthogonal. 

8. Any function in the space of A can be decomposed into a linear combination 

of functions transforming according to irteps of G. 
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The operator 

P « - ^ E x < " ( 0 ) P o (A.6) 
h o 

projects out the component transforming according to the ith representation of group G. 

Theorem A.4. Let <P, be irteducible, i = l,...,n, (the number of classes).Then the matrix 

{^,A<S>.) 

is diagonal. The elements belonging to the components of a multi (i.e. two or three) dimensional 

I representation are equal. 

Proof: this statement is an immediate consequence of the Wigner-Eckart theorem, see Ludwig-

Falter, Ref [25], p. 129-134. 

For most point groups, the product of two irreps can be expanded according to the same 

basis function set as the irreps themselves. The same is true if an operator transforming according 

to an irtep is applied to a function transforming according to another irtep. Because the dimension 

of the product is usually larger then the dimension of the components, it may contain a number f 

irteps. Let f'"j, and g''̂ 'j2 be the basis functions in two irteducible subspaces. Their product will 

have the form (see Ref [25], p.84). 

f(il)„(i2) v ^ 

J3.i3 V 

il i2i3 

j t i s l j l j 2 p j 
fjf • (A.7) 

Here the term in brackets is the Clebsch-Gordan coefficient. 



-61-

APPENDDC B. BASIC NOTIONS OF NEUTRON DffFUSION AND TRANSPORT 

Appendix B explains the basic notions of neutron diffusion. This may give the reader hint 

as to the underlying assumptions on the operators and the solutions of the equations. 

The elementary solution satisfying the DE 

-V^^.{x) + S/bfx) = 0 (B.l) 

in a homogeneous region Vj is 

*.(x) = tfê """ (B.2) 

where |b| = 1, and tj(k) denotes the G eigenvectors of the Sj matrix: 

S.t*' =X^t<'". (B.3) 

The matrix Sj is often expressed (dropping the volume index j) as Sj = AP-D, where P is the 

production, D is the destruction operator. The elements of matrix S are 

V = S s - T ' V - V s -

Another notation is S-P/k,„-D. The value of X (or k,„), at which the homogeneous problem has a 

nontrivial solution, is called critical eigenvalue. Note that k„f, pertains to volume V and not to any 

of W- subvolumes. The power distribution is 

^ . = 7 / ( ^ A / ^ ' ^ . 2 2 ; 2 ) ' ' ^ , 
(B.4) 
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where ^ j , stands for the flux in volume Vj, in energy group i. The cross-sections are given in each 

subvolume. 

In the neutron transport equation (TE), the angular flux <I>(x,E,Q) is the dependent variable. 

It gives the the distance travelled by the neuu-ons located at x, having energy E and flying direction 

Q. The transport equation reads as 

(-QV + S(x,E))$(x,E,Q) = r|S^(x;E',n',E,Q)$(x,E',Q')dE'dQ' ^ 

+ Q(x,E,Q). 

Where Q contains the source. When no external source is present, Q is the fission source: 

Q(x,E,Q) = — ^ ^ rrvS/x,E')*(x,E',Q')dE'dQ'. 
471 k̂ „ J J 

The partial curtents are given by 

I*(x,E) = f nQ'I>(x,E,Q)dQ (B.6) 
QnxO 

where n is the outward normal at position x. The angular flux is often expressed in terms of the first 

few lower order Legendre or spherical harmonics components. Such an expression may be 

4)(x,E,0) = — r$(x,E,Q)dQ + — rQ<I>(x,E,Q)dQ (B.7) 

where the first term is the so called scalar flux, the second term is the net curtent. 
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